Z = 4Mo *K* α radiation

 $\mu = 0.08 \text{ mm}^-$

 $0.58 \times 0.42 \times 0.35 \text{ mm}$

T = 298 K

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,4-Bis(2-methoxyphenyl)-3-azabicyclo[3.3.1]nonan-9-one

P. Parthiban,^a V. Ramkumar,^b Min Sung Kim,^a Se Mo Son^a and Yeon Tae Jeong^a*

^aDivision of Image Science and Information Engineering, Pukyong National University, Busan 608 739, Republic of Korea, and ^bDepartment of Chemistry, IIT Madras, Chennai 36, Tamil Nadu, India Correspondence e-mail: ytjeong@pknu.ac.kr

Received 27 April 2009; accepted 18 May 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; R factor = 0.048; wR factor = 0.135; data-to-parameter ratio = 18.8.

In the title compound, $C_{22}H_{25}NO_3$, the molecule has a pseudomirror plane. The structure is a positional isomer of 2,4bis(4-methoxyphenyl)-3-azabicyclo[3.3.1]nonan-9-one [Cox, McCabe, Milne & Sim (1985). J. Chem. Soc. Chem. Commun. pp. 626–628]. The 3-azabicyclo[3.3.1]nonan-9-one moiety adopts a double chair conformation with equatorial orientations of both 2-methoxyphenyl substituents on either side of the secondary amino group. The benzene rings are oriented at an angle of 33.86 (4)° with respect to each other and the methoxy groups point towards the carbonyl group. The crystal structure is stabilized by intermolecular $N-H\cdots\pi$ interactions.

Related literature

For prevalence and biological activities of 3-azabicyclononan-9-ones, see: Hardick *et al.* (1996); Jeyaraman & Avila (1981); Barker *et al.* (2005). For similiar structures, see: Parthiban *et al.* (2008*a*,*b*); Cox *et al.* (1985). For ring-puckering parameters, see: Cremer & Pople (1975).

 $M_r = 351.43$

Experimental

Crystal data C₂₂H₂₅NO₃ Monoclinic, $P2_1/n$ a = 7.8616 (2) Å b = 20.8443 (6) Å c = 11.4984 (3) Å $\beta = 95.670(10)^{\circ}$ V = 1874.37 (9) Å³

Data collection

Bruker APEXII CCD area-detector	14712 measured reflections
diffractometer	4527 independent reflections
Absorption correction: multi-scan	3202 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 1999)	$R_{\rm int} = 0.023$
$T_{\min} = 0.945, T_{\max} = 0.972$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	H atoms treated by a mixture of
$vR(F^2) = 0.135$	independent and constrained
S = 1.03	refinement
4527 reflections	$\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$
241 parameters	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Table 1 N-H··· π geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdots Cg1^i$	0.90 (4)	2.75 (4)	3.58 (5)	152.87 (3)
		0.1 1. 1		014

Symmetry code: (i) -x + 1, -y + 2, -z. Cg1 is the centroid of the C9–C14 ring.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2*; data reduction: *SAINT-Plus* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2207).

References

- Barker, D., Lin, D. H.-S., Carland, J. E., Chu, C. P.-Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). *Bioorg. Med. Chem.* 13, 4565– 4575.
- Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison,
- Wisconsin, USA.
 Cox, P. J., McCabe, P. H., Milne, N. J. & Sim, G. A. (1985). *J. Chem. Soc. Chem. Commun.* pp. 626–628.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hardick, D. J., Blagbrough, I. S., Cooper, G., Potter, B. V. L., Critchley, T. & Wonnacott, S. (1996). J. Med. Chem. 39, 4860–4866.
- Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149-174.
- Parthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008a). Acta Cryst. E64, 01586.
- Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2008b). Acta Cryst. E64, 02385.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2009). E65, o1383 [doi:10.1107/S1600536809018686]

2,4-Bis(2-methoxyphenyl)-3-azabicyclo[3.3.1]nonan-9-one

P. Parthiban, V. Ramkumar, M. S. Kim, S. M. Son and Y. T. Jeong

Comment

Widespread interest in the chemistry of 3-azabicyclononan-9-ones is due to their presence in numerous naturally occurring alkaloids and broad spectrum biological activities (Jeyaraman & Avila, 1981; Hardick et al., 1996; Barker et al., 2005). Since the stereochemistry plays a crucial role in eliciting the biological response, it is immense to establish the stereochemistry of the biologically important molecules. Even though similar compounds show double chair conformation (Parthiban et al., 2008a,b), we have carried out the single-crystal XRD study for the title compound to know the impact of comparatively bulkier methoxy substituent on ortho position of the phenyl group, attached on either side of the secondary amino group. The molecule has a pseudo mirror plane. The structure is a positional isomer of 2,4-Bis(p-methoxyphenyl)-3azabicyclo(3.3.1)nonan-9-one (Cox et al., 1985). The title compound C₂₂H₂₅NO₃, exists in double chair conformation with an equatorial orientation of the ortho-methoxyphenyl group on both sides of the secondary amino group with the torsion angle of C8—C2—C1—C9 and C8—C6—C7—C15 are -179.66 (3) and -179.76 (4)°, respectively. In both aryl groups, the methoxy substituent point towards the carbonyl group at an angle of 33.86 (4)° to each other. A study of torsion angles, asymmetry parameters and least-squares plane calculation shows that the piperidine ring adopts near ideal chair conformation with the deviation of ring atoms N1 and C8 from the C1/C2/C6/C7 plane by -0.641 (3) and 0.718 (3) Å, respectively; $Q_T = 0.6101 (15) \text{ Å}, q(2) = 0.0490 (15) \text{ Å}, q(3) = -0.6081 (15) \text{ Å}, \theta = 175.41 (14)^\circ$ (Cremer & Pople, 1975) whereas the cyclohexane ring atoms C4 and C8 deviate from the C2/C3/C5/C6 plane by -0.537 (4) and 0.710 (3) Å, respectively; $Q_T =$ $0.5528 (17) \text{ Å}, q(2) = 0.1286 (17) \text{ Å}, q(3) = -0.5376 (17) \text{ Å}, \theta = 166.55 (18)^{\circ}.$

Experimental

A mixture of cyclohexanone (4.90 g) and *ortho*-methoxybenzaldehyde (13.62 g) was added to a warm solution of ammonium acetate (5.78 g) in 50 ml of absolute ethanol. The mixture was gently warmed with stirring till the yellow color was formed during the mixing of the reactants and then allowed to stirring at room temperature up to the formation of product. At the end, the crude azabicyclic ketone was separated by filtration and washed with 1:5 ethanol–ether mixture till the solid became colorless. Recrystallization of the compound from ethanol gave X-ray diffraction quality crystals of 2,4-bis(2-methoxyphenyl)-3-azabicyclo[3.3.1]nonan-9-one.

Refinement

Nitrogen H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were fixed geometrically and allowed to ride on the parent C atoms, with aromatic C—H = 0.93 Å, aliphatic C—H = 0.98 Å and methylen C—H = 0.97 Å. The displacement parameters were set for phenyl, methylen and aliphatic H atoms at $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. View of the title molecule with atoms represented as 30% probability ellipsoids.

Fig. 2. The N—H $\cdots\pi$ interactions.

2,4-Bis(2-methoxyphenyl)-3-azabicyclo[3.3.1]nonan-9-one

Crystal data	
C ₂₂ H ₂₅ NO ₃	$F_{000} = 752$
$M_r = 351.43$	$D_{\rm x} = 1.245 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 4251 reflections
a = 7.8616 (2) Å	$\theta = 2.6 - 27.0^{\circ}$
b = 20.8443 (6) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 11.4984 (3) Å	T = 298 K
$\beta = 95.8670 \ (10)^{\circ}$	Block, colourless
$V = 1874.37 (9) \text{ Å}^3$	$0.58 \times 0.42 \times 0.35 \text{ mm}$
Z = 4	

Data collection

Bruker APEXII CCD area-detector diffractometer	4527 independent reflections
Radiation source: fine-focus sealed tube	3202 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.023$
T = 298 K	$\theta_{\text{max}} = 28.3^{\circ}$
φ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1999)	$h = -9 \rightarrow 10$
$T_{\min} = 0.945, \ T_{\max} = 0.972$	$k = -27 \rightarrow 26$
14712 measured reflections	$l = -15 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.135$	$w = 1/[\sigma^2(F_o^2) + (0.065P)^2 + 0.3026P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\text{max}} = 0.001$
4527 reflections	$\Delta \rho_{max} = 0.17 \text{ e } \text{\AA}^{-3}$
241 parameters	$\Delta \rho_{\rm min} = -0.25 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$ \boldsymbol{Z} х y C1 0.0343(3)0.72892 (16) 0.98913 (6) 0.17176 (12) H10.7974 0.9851 0.1055 0.041* C2 0.85201 (18) 0.0417 (3) 1.00058 (7) 0.28460 (14) H2 0.9208 1.0389 0.2735 0.050* C3 0.7636(2) 1.00894 (8) 0.39684 (15) 0.0531 (4) H3A 0.8479 0.064* 1.0232 0.4589 H3B 1.0424 0.3840 0.064* 0.6781 C4 0.94870 (9) 0.0582 (4) 0.6779(2) 0.43724 (15) H4A 0.5702 0.9424 0.070* 0.3894 H4B 0.6529 0.9545 0.5175 0.070* C5 0.7881 (2) 0.88909 (8) 0.42979 (15) 0.0552 (4) H5A 0.7179 0.8515 0.4390 0.066* H5B 0.8775 0.8896 0.4945 0.066* C6 0.87146 (18) 0.88257(7) 0.31544 (14) 0.0435 (4) 0.052* H6 0.9521 0.8466 0.3229 C7 0.74651 (17) 0.87292 (6) 0.20328 (13) 0.0366 (3) H7 0.044* 0.8145 0.8689 0.1368 C8 0.96882 (18) 0.94334 (7) 0.29817 (14) 0.0431 (4) C9 0.60420 (16) 1.04380(6) 0.14722 (12) 0.0336 (3) C10 0.43367 (18) 1.03906(7) 0.16792 (13) 0.0415 (3) H10 0.3947 1.0014 0.1994 0.050* 0.32021 (19) C11 1.08937 (8) 0.14269 (15) 0.0478 (4) H11 0.2061 1.0851 0.1560 0.057* C12 0.09793 (14) 0.0467 (4) 0.37750 (19) 1.14550(7) H12 0.3019 1.1794 0.0818 0.056* C13 0.54701 (18) 1.15209(7) 0.07648 (13) 0.0422 (3) H13 0.5850 1.1903 0.0462 0.051* C14 1.10152 (6) 0.10043 (12) 0.0352 (3) 0.65935 (17) C15 0.63790 (17) 0.81319 (6) 0.20774 (13) 0.0372 (3) C16 0.69939 (18) 0.75399(6) 0.17200 (13) 0.0402 (3) C17 0.5962 (2) 0.69992 (7) 0.16825 (15) 0.0500 (4) H17 0.6372 0.6609 0.1436 0.060* C18 0.4323(2)0.70404(8)0.20125 (16) 0.0547 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H18	0.3631	0.6677	0.1982	0.066*
C19	0.3707 (2)	0.76145 (8)	0.23863 (15)	0.0515 (4)
H19	0.2610	0.7639	0.2618	0.062*
C20	0.47349 (18)	0.81559 (7)	0.24150 (14)	0.0440 (4)
H20	0.4314	0.8543	0.2666	0.053*
C21	0.8836 (2)	1.15648 (10)	0.01693 (18)	0.0661 (5)
H21A	0.8196	1.1579	-0.0587	0.099*
H21B	1.0030	1.1519	0.0079	0.099*
H21C	0.8656	1.1955	0.0583	0.099*
C22	0.9277 (2)	0.69656 (8)	0.09613 (18)	0.0615 (5)
H22A	0.9330	0.6641	0.1556	0.092*
H22B	1.0402	0.7041	0.0736	0.092*
H22C	0.8538	0.6825	0.0293	0.092*
N1	0.63559 (14)	0.92907 (5)	0.18328 (11)	0.0358 (3)
O1	1.12212 (14)	0.94572 (6)	0.29471 (13)	0.0676 (4)
O2	0.82804 (12)	1.10343 (5)	0.08112 (10)	0.0470 (3)
O3	0.86248 (14)	0.75428 (5)	0.14027 (11)	0.0532 (3)
H1A	0.567 (2)	0.9222 (7)	0.1162 (15)	0.046 (4)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0332 (6)	0.0317 (6)	0.0388 (8)	-0.0012 (5)	0.0068 (6)	-0.0005 (5)
C2	0.0361 (7)	0.0370 (7)	0.0508 (9)	-0.0062 (6)	-0.0013 (6)	-0.0005 (6)
C3	0.0589 (10)	0.0535 (9)	0.0449 (10)	0.0039 (8)	-0.0036 (7)	-0.0115 (7)
C4	0.0631 (11)	0.0733 (12)	0.0390 (9)	-0.0011 (9)	0.0097 (8)	-0.0040 (8)
C5	0.0598 (10)	0.0600 (10)	0.0444 (10)	-0.0077 (8)	-0.0023 (8)	0.0127 (8)
C6	0.0362 (7)	0.0377 (7)	0.0556 (10)	0.0035 (6)	-0.0008 (7)	0.0060 (7)
C7	0.0354 (7)	0.0309 (6)	0.0446 (8)	-0.0010 (5)	0.0093 (6)	0.0003 (6)
C8	0.0344 (7)	0.0488 (8)	0.0448 (9)	-0.0028 (6)	-0.0019 (6)	0.0000 (7)
C9	0.0345 (7)	0.0327 (6)	0.0336 (8)	-0.0008 (5)	0.0029 (5)	-0.0025 (5)
C10	0.0378 (7)	0.0399 (7)	0.0477 (9)	-0.0026 (6)	0.0091 (6)	0.0008 (6)
C11	0.0347 (7)	0.0532 (9)	0.0567 (10)	0.0050 (7)	0.0110 (7)	-0.0022 (8)
C12	0.0453 (8)	0.0438 (8)	0.0507 (10)	0.0126 (7)	0.0038 (7)	-0.0008 (7)
C13	0.0473 (8)	0.0356 (7)	0.0433 (9)	0.0015 (6)	0.0033 (7)	0.0029 (6)
C14	0.0339 (7)	0.0374 (7)	0.0346 (7)	-0.0021 (6)	0.0041 (5)	-0.0008 (6)
C15	0.0397 (7)	0.0348 (7)	0.0371 (8)	-0.0029 (6)	0.0031 (6)	0.0040 (6)
C16	0.0436 (8)	0.0344 (7)	0.0431 (9)	-0.0013 (6)	0.0060 (6)	0.0058 (6)
C17	0.0620 (10)	0.0343 (7)	0.0540 (10)	-0.0063 (7)	0.0073 (8)	0.0020 (7)
C18	0.0591 (10)	0.0470 (9)	0.0577 (11)	-0.0202 (8)	0.0045 (8)	0.0071 (8)
C19	0.0427 (8)	0.0565 (10)	0.0561 (10)	-0.0111 (7)	0.0089 (7)	0.0090 (8)
C20	0.0431 (8)	0.0427 (8)	0.0469 (9)	-0.0021 (6)	0.0086 (7)	0.0025 (7)
C21	0.0463 (9)	0.0827 (13)	0.0698 (13)	-0.0097 (9)	0.0081 (8)	0.0362 (10)
C22	0.0672 (11)	0.0458 (9)	0.0744 (13)	0.0096 (8)	0.0209 (9)	-0.0044 (8)
N1	0.0344 (6)	0.0299 (6)	0.0419 (7)	-0.0020 (5)	-0.0015 (5)	-0.0003 (5)
01	0.0330 (6)	0.0683 (8)	0.1010 (11)	-0.0040 (5)	0.0034 (6)	0.0059 (7)
O2	0.0359 (5)	0.0468 (6)	0.0593 (7)	-0.0022 (4)	0.0104 (5)	0.0138 (5)
03	0.0511 (6)	0.0345 (5)	0.0773 (8)	0.0022 (5)	0.0220 (6)	-0.0021 (5)

Geometric parameters (Å, °)

C1—N1	1.4640 (16)	C11—C12	1.373 (2)
C1—C9	1.5110 (17)	C11—H11	0.9300
C1—C2	1.556 (2)	C12—C13	1.387 (2)
С1—Н1	0.9800	C12—H12	0.9300
C2—C8	1.504 (2)	C13—C14	1.3846 (19)
С2—С3	1.537 (2)	C13—H13	0.9300
С2—Н2	0.9800	C14—O2	1.3674 (16)
C3—C4	1.520 (2)	C15—C20	1.3879 (19)
С3—НЗА	0.9700	C15—C16	1.4021 (19)
С3—Н3В	0.9700	C16—O3	1.3684 (17)
C4—C5	1.522 (2)	C16—C17	1.3868 (19)
C4—H4A	0.9700	C17—C18	1.383 (2)
C4—H4B	0.9700	С17—Н17	0.9300
C5—C6	1.534 (2)	C18—C19	1.376 (2)
С5—Н5А	0.9700	C18—H18	0.9300
С5—Н5В	0.9700	C19—C20	1.386 (2)
C6—C8	1.504 (2)	С19—Н19	0.9300
C6—C7	1.552 (2)	C20—H20	0.9300
С6—Н6	0.9800	C21—O2	1.4227 (18)
C7—N1	1.4636 (16)	C21—H21A	0.9600
C7—C15	1.5136 (17)	C21—H21B	0.9600
С7—Н7	0.9800	C21—H21C	0.9600
C8—O1	1.2109 (17)	C22—O3	1.4216 (18)
C9—C10	1.3889 (18)	C22—H22A	0.9600
C9—C14	1.4044 (18)	С22—Н22В	0.9600
C10—C11	1.388 (2)	С22—Н22С	0.9600
C10—H10	0.9300	N1—H1A	0.907 (17)
N1—C1—C9	109.89 (10)	C11—C10—H10	119.3
N1—C1—C2	109.30 (11)	С9—С10—Н10	119.3
C9—C1—C2	112.12 (11)	C12-C11-C10	119.60 (13)
N1—C1—H1	108.5	C12—C11—H11	120.2
С9—С1—Н1	108.5	C10-C11-H11	120.2
C2-C1-H1	108.5	C11—C12—C13	120.61 (13)
C8—C2—C3	109.05 (13)	C11-C12-H12	119.7
C8—C2—C1	106.62 (11)	C13—C12—H12	119.7
C3—C2—C1	114.94 (12)	C14—C13—C12	119.63 (13)
С8—С2—Н2	108.7	C14—C13—H13	120.2
С3—С2—Н2	108.7	C12—C13—H13	120.2
C1—C2—H2	108.7	O2—C14—C13	123.71 (12)
C4—C3—C2	114.56 (13)	O2—C14—C9	115.45 (12)
С4—С3—НЗА	108.6	C13—C14—C9	120.84 (12)
С2—С3—НЗА	108.6	C20—C15—C16	118.20 (13)
С4—С3—Н3В	108.6	C20—C15—C7	121.64 (12)
С2—С3—Н3В	108.6	C16—C15—C7	120.09 (12)
НЗА—СЗ—НЗВ	107.6	O3—C16—C17	123.81 (13)
C3—C4—C5	112.60 (14)	O3—C16—C15	115.77 (12)

C3—C4—H4A	109.1	C17—C16—C15	120.41 (13)
С5—С4—Н4А	109.1	C18—C17—C16	119.98 (15)
C3—C4—H4B	109.1	С18—С17—Н17	120.0
C5—C4—H4B	109.1	С16—С17—Н17	120.0
H4A—C4—H4B	107.8	C19—C18—C17	120.47 (14)
C4—C5—C6	114.58 (13)	C19—C18—H18	119.8
C4—C5—H5A	108.6	C17—C18—H18	119.8
С6—С5—Н5А	108.6	C18—C19—C20	119.51 (14)
C4—C5—H5B	108.6	С18—С19—Н19	120.2
С6—С5—Н5В	108.6	С20—С19—Н19	120.2
H5A—C5—H5B	107.6	C19—C20—C15	121.41 (14)
C8—C6—C5	107.83 (13)	С19—С20—Н20	119.3
C8—C6—C7	106.67 (12)	С15—С20—Н20	119.3
C5—C6—C7	115.74 (12)	O2—C21—H21A	109.5
С8—С6—Н6	108.8	O2—C21—H21B	109.5
С5—С6—Н6	108.8	H21A—C21—H21B	109.5
С7—С6—Н6	108.8	O2—C21—H21C	109.5
N1—C7—C15	109.52 (11)	H21A—C21—H21C	109.5
N1—C7—C6	110.07 (11)	H21B—C21—H21C	109.5
C15—C7—C6	112.93 (11)	O3—C22—H22A	109.5
N1—C7—H7	108.1	O3—C22—H22B	109.5
С15—С7—Н7	108.1	H22A—C22—H22B	109.5
С6—С7—Н7	108.1	O3—C22—H22C	109.5
O1—C8—C6	124.11 (14)	H22A—C22—H22C	109.5
O1—C8—C2	124.27 (14)	H22B—C22—H22C	109.5
C6—C8—C2	111.62 (12)	C7—N1—C1	113.70 (10)
C10-C9-C14	117.90 (12)	C7—N1—H1A	107.5 (10)
C10—C9—C1	122.25 (12)	C1—N1—H1A	108.7 (10)
C14—C9—C1	119.85 (11)	C14—O2—C21	117.45 (12)
С11—С10—С9	121.42 (13)	C16—O3—C22	118.24 (12)
N1—C1—C2—C8	58.24 (14)	C11—C12—C13—C14	0.0 (2)
C9—C1—C2—C8	-179.66 (11)	C12—C13—C14—O2	179.37 (14)
N1—C1—C2—C3	-62.72 (15)	C12—C13—C14—C9	-0.6 (2)
C9—C1—C2—C3	59.38 (15)	C10-C9-C14-O2	-179.60 (12)
C8—C2—C3—C4	-51.29 (18)	C1—C9—C14—O2	-0.42 (19)
C1—C2—C3—C4	68.33 (18)	C10-C9-C14-C13	0.4 (2)
C2—C3—C4—C5	43.6 (2)	C1—C9—C14—C13	179.54 (13)
C3—C4—C5—C6	-45.3 (2)	N1—C7—C15—C20	-26.68 (19)
C4—C5—C6—C8	54.13 (17)	C6—C7—C15—C20	96.37 (16)
C4—C5—C6—C7	-65.18 (18)	N1-C7-C15-C16	150.24 (13)
C8—C6—C7—N1	-57.03 (14)	C6—C7—C15—C16	-86.71 (16)
C5—C6—C7—N1	62.93 (15)	C20-C15-C16-O3	-179.66 (13)
C8—C6—C7—C15	-179.76 (11)	C7—C15—C16—O3	3.3 (2)
C5—C6—C7—C15	-59.81 (16)	C20-C15-C16-C17	1.4 (2)
C5—C6—C8—O1	117.71 (18)	C7—C15—C16—C17	-175.58 (13)
C7—C6—C8—O1	-117.36 (17)	O3—C16—C17—C18	-179.58 (15)
C5—C6—C8—C2	-62.84 (16)	C15—C16—C17—C18	-0.8 (2)
C7—C6—C8—C2	62.09 (16)	C16—C17—C18—C19	-0.4 (3)
C3—C2—C8—O1	-118.78 (18)	C17-C18-C19-C20	0.9 (3)

C1—C2—C8—O1	116.57 (17)	C18—C19—C20—C15		-0.2(2)
C3—C2—C8—C6	61.77 (16)	C16—C15—C20—C19		-1.0 (2)
C1—C2—C8—C6	-62.88 (16)	C7—C15—C20—C19		176.01 (14)
N1-C1-C9-C10	17.27 (18)	C15—C7—N1—C1		-177.14 (11)
C2—C1—C9—C10	-104.49 (15)	C6-C7-N1-C1		58.14 (15)
N1—C1—C9—C14	-161.87 (12)	C9-C1-N1-C7		178.03 (11)
C2-C1-C9-C14	76.37 (16)	C2-C1-N1-C7		-58.54 (15)
C14—C9—C10—C11	0.4 (2)	C13—C14—O2—C21		-9.8 (2)
C1—C9—C10—C11	-178.73 (14)	C9-C14-O2-C21		170.19 (14)
C9—C10—C11—C12	-1.0 (2)	C17—C16—O3—C22		2.8 (2)
C10-C11-C12-C13	0.7 (2)	C15—C16—O3—C22		-176.03 (14)
Hydrogen-bond geometry (Å, °)				
D—H··· A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1A…Cg1 ⁱ	0.90 (4)	2.75 (4)	3.58 (5)	152.87 (3)
Symmetry codes: (i) $-x+1$, $-y+2$, $-z$.				

Fig. 1

